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Although simple
average mass of
w.d. companions
is 0.23 M� larger,
weighted average is
0.04 M� smaller

Champion et al. 2008

Demorest et al. 2010

Antoniadis et al. 2013

Romani et al. 2012

vanKerkwijk 2010
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Causality + GR Limits and the Maximum Mass

A lower limit to the
maximum mass sets a
lower limit to the
radius for a given mass.

Similarly, a precise
(M ,R) measurement
sets an upper limit to
the maximum mass.

1.4M� stars must have
R > 8.15M�.

1.4M� strange quark
matter stars (and likely
hybrid quark/hadron
stars) must have
R > 11 km.
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The Radius – Pressure Correlation

Lattimer & Prakash (2001) Lattimer & Lim (2013)
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Nuclear Symmetry Energy

Defined as the difference between energies of pure neutron matter
(x = 0) and symmetric (x = 1/2) nuclear matter.

S(ρ) = E (ρ, x = 0)− E (ρ, x = 1/2)

Expanding around the saturation density
(ρs) and symmetric matter (x = 1/2)

E (ρ, x) = E (ρ, 1/2)+(1−2x)2S2(ρ)+. . .

S2(ρ) = Sv +
L

3

ρ− ρs
ρs

+ . . .

Sv ' 31 MeV, L ' 50 MeV

C. Fuchs, H.H. Wolter, EPJA 30(2006) 5

6

?

symmetry energy

Connections to pure neutron matter:

E (ρs , 0) ≈ Sv + E (ρs , 1/2) ≡ Sv − B, p(ρs , 0) = Lρs/3

Neutron star matter (in beta equilibrium):

∂(E + Ee)

∂x
= 0, p(ρs , xβ) ' Lρs

3

[
1−

(
4Sv
~c

)3
4− 3Sv/L

3π2ρs

]
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Nuclear Experimental Constraints
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' 3a
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]

Binding Energies

Liquid Droplet Model

Esym = AI 2
[

Sv
1+SsA−1/3/Sv

−
Ze2

20R
SsA−1/3/Sv

1+SsA−1/3/Sv

]
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Nuclear Experimental Constraints

Neutron Skin Thicknesses

rnp = 2ro
3Sv

1√
1−I 2 (1 + SsA

−1/3/Sv )−1

×
√

3
5

[
ISs − 3Ze2

140ro

(
1 + 10

3
SsA

−1/3

Sv

)]
rnp,208 = 0.15± 0.04 fm
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Nuclear Experimental Constraints

Flows in
Heavy Ion CollisionsReaction Mechanisms in Heavy Ion Collisions

Coulomb barrier to 
Fermi energies

Isospin
migration

Isospin
fractionation,
multifragm
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Proton and neutron currents

Sensitive to Sym. Energy and 
slope depending on observable

peripheral

Wolter, NuSYM11
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Nuclear Experimental Constraints

Giant Dipole Resonance
Centroids

23.3 MeV< S2(0.1 fm−3) <24.9 MeV

www.tunl.duke.edu
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Nuclear Experimental Constraints

Dipole Polarizabilities

αD = 4m−1

' AR2

20Sv

(
1 + 5

3
SsA

−1/3

Sv

)
Uses data of

Tamii et al. (2011)

αD,208 = 20.1± 0.6 fm2
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Nuclear Experimental Constraints

Isobaric Analog States
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Theoretical Neutron Matter Calculations

H&S: Chiral Lagrangian

GC&R: Quantum Monte Carlo

Sv − L constraints from
Hebeler et al. (2012)
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Theoretical Neutron-Rich Matter Calculations

Chiral Lagrangian studies of
neutron and neutron-rich matter
by Drischler, Somá &
Schwenk (2014)

Includes uncertainties in
symmetric matter properties
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Simultaneous Mass/Radius Measurements

I Measurements of flux F∞ = (R∞/D)2 σT 4
eff

and color temperature Tc ∝ λ−1max yield an
apparent angular size (pseudo-BB):

R∞
D

=
R

D

1√
1− 2GM/Rc2

I Observational uncertainties include
distance D, interstellar absorption
NH , atmospheric composition

Best chances for accurate radius measurement:

I Nearby isolated neutron stars with parallax (uncertain atmosphere)
I Quiescent low-mass X-ray binaries (QLMXBs) in globular clusters

(reliable distances, low B H-atmosperes)
I Bursting sources (XRBs) with peak fluxes close to Eddington limit

(where gravity balances radiation pressure)

FEdd =
cGM

κD2

√
1− 2GM/Rc2

J. M. Lattimer How Well Do We Know the High-Density Equation of State?



Photospheric Radius Expansion X-Ray Bursts

Galloway, Muno, Hartman, Psaltis & Chakrabarty (2006)

⇐ FEdd = GMc
κD2

√
1− 2GM

Rphc2 ⇐ FEdd

A = f −4c (R∞/D)2 A = f −4c (R∞/D)2

EXO 1745-248
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PRE Burst Models

Ozel et al. zph = z β = GM/Rc2 Steiner et al. zph << z

FEdd,∞ =
GMc

κD

√
1− 2β

A =
F∞
σT 4
∞

= f −4c

(
R∞
D

)2

α =
FEdd,∞√

A

κD

f 2c c
3

= β(1− 2β)

γ =
Af 4c c

3

κFEdd,∞
=

R∞
α

β =
1

4
± 1

4

√
1− 8α

α ≤ 1

8
required.

FEdd,∞ =
GMc

κD

α = β
√

1− 2β
θ = cos−1

(
1− 54α2

)
β =

1

6

[
1 +
√

3 sin

(
θ

3

)
− cos

(
θ

3

)]

α ≤
√

1

27
' 0.192 required.

α
EXO 1745-248 4U 1608-522 4U 1820-30 KS 1731-260 SAX J1748.9-2021
0.188± 0.035 0.247± 0.058 0.235± 0.04 0.199± 0.032 0.177± 0.036
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M − R PRE Burst Estimates

FEdd,∞, (R∞/D)2f −4c ,D,

fc from Ozel et al.

zph = z

Lattimer & Steiner (2013)
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M − R PRE Burst Estimates

FEdd,∞, (R∞/D)2f −4c ,D

from Ozel et al.

zph = 0

Altered uncertainties

for fc ,D

Lattimer & Steiner (2013)
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PRE Burst Conundrum
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Poutanen et al. (2014) and
Suleimanov et al. (2011)
argue that soft short Type I bursts
are affected by accretion
discs that obscure our view.

This leads to underestimates of
FEdd,∞ and F∞.

They also claim that fc should
be about 1.2 times larger.

Thus, estmates of α would
remain roughly unchanged,
but those of γ would be
larger by f 4c , leading
to increases in radius estimates
by the same factor.

They claim hard longer bursts should instead be used to infer masses and radii.

J. M. Lattimer How Well Do We Know the High-Density Equation of State?



M − R QLMXB Estimates
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Guillot et al. (2013)

Absorption (NH)
determined
self-consistently
from spectra
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Interpretation
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M − R QLMXB Estimates
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Lattimer & Steiner (2013)

P(M,R) from H atmosphere
models of Guillot et al. (2013),
adjusted for alternate NH values
of Dickey & Lockman (1990).

Heinke et al. (2014) found
NGC 6397 probably has a
He atmosphere and ω Cen
has a smaller NH than
Guillot et al. (2013) found.
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Bayesian TOV Inversion

I ε < 0.5ε0: Known crustal EOS

I 0.5ε0 < ε < ε1: EOS
parametrized by K ,K ′,Sv , γ

I Polytropic EOS: ε1 < ε < ε2: n1;
ε > ε2: n2

I EOS parameters K ,K ′,Sv , γ, ε1,
n1, ε2, n2 uniformly distributed

I Mmax ≥ 1.97 M�, causality
enforced

I All 10 stars equally weighted
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Astronomy vs. Astronomy vs. Physics

Ozel et al., PRE bursts zph =
z : R = 9.74± 0.50 km.

Suleimanov et al., long
PRE bursts: R1.4

>∼13.9 km

Guillot et al. (2013), all
stars have the same radius,
self NH : R = 9.1+1.3

−1.5 km.

Lattimer & Steiner (2013),
TOV, crust EOS, causality,
maximum mass > 2M�,
zph = z , alt NH .

Lattimer & Lim (2013),
nuclear experiments:
29 MeV < Sv < 33 MeV,
40 MeV < L < 65 MeV,
R1.4 = 12.0± 1.4 km. 6 8 10 12 14 16 18
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Additional Proposed Radius and Mass Constraints
I Pulse profiles

Hot or cold regions on rotating
neutron stars alter pulse shapes:
NICER and LOFT will enable
timing and spectroscopy of
thermal and non-thermal emissions.
Light curve modeling → M/R;
phase-resolved spectroscopy → R.

I Moment of inertia
Spin-orbit coupling of ultra-
relativistic binary pulsars
(e.g., PSR 0737+3039) vary i and
contribute to ω̇: I ∝ MR2.

I Supernova neutrinos
Millions of neutrinos detected from
a Galactic supernova will measure
BE= mBN −M, < Eν >, τν .

I QPOs from accreting sources
ISCO and crustal oscillations

NASA

Neutron star Interior Composition ExploreR

Large Observatory For x-ray Timing

ESA/NASA
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Constraints from Observations of Gravitational Radiation

Mergers:
Chirp mass M = (M1M2)3/5M−1/5 and
tidal deformability λ ∝ R5 (Love number)
are potentially measurable during inspiral.

λ̄ ≡ λM−5 is related to Ī ≡ IM−3 by an
EOS-independent relation (Yagi & Yunes
2013). Both λ̄ and Ī are also related to
M/R in a relatively EOS-independent way
(Lattimer & Lim 2013).

I Neutron star - neutron star: Mcrit for
prompt black hole formation, fpeak

depends on R.

I Black hole - neutron star:
ftidal disruption depends on R, a,MBH.
Disc mass depends on a/MBH and on
MNSMBHR

−2.

Rotating neutron stars: r-modes
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